
~ Pergamon 
www.elsevier.com/locate/jappmathmech 

J. Appl. Maths Mechs, Vol. 65, No. 6, pp. 90%913, 2001 
© 2002 Elsevier Science Ltd 

All rights reserved. Printed in Great Britain 
PII: S0021-8928(01)00096-X O021-8928/01/$--see front matter 

THE LIMITING STEADY ROTATIONS OF A BODY 
ON A STRING WITH A SUSPENSION POINT 

ON THE AXIS OF SYMMETRYt 

S. A.  M I R E R  a n d  V. A.  S A R Y C H E V  

Moscow and Lisbon (Portugal) 

e-mail: mirer@spp.keldysh.ru; sarychev@demnet.ubi.pt 

(Received 16 January 2001) 

The steady motions of an axisymmetrical rigid body suspended from a fixed base by a weightless undeformable rod or a non- 
twisting incxtensible string are investigated. The case when the rod is fastened to the body at a point situated on its axis of dynamic 
symmetry is considered. All types of limiting equilibrium configurations which are possible when there is an unlimited increase 
in the angular velocity of rotation of the system about the vertical are analysed. Domains in which each type of limiting regular 
precession and permanent rotation can exist are constructed in the space of dimensionless parameters, and the nature of their 
asymptotic behaviour when the angular velocity increases is determined. The limiting motions which are possible in the case of 
suspension on a rod and impossible in the case of suspension on a string are investigated. © 2002 Elsevier Science Ltd. All rights 
reserved. 

Consider an axisymmetrical rigid body with centre of mass G suspended on a weightless absolutely rigid 
rod (or a non-twisting inextensible tight string) at a point 02, situated on the axis of symmetry of the 
body (Fig. 1). The other end of the rod (the point O1) is connected to a device which ensures that the 
system rotates about a vertical axis with velocity co. The motion of a body on a string suspension has 
been considered in a large number of papers. The most complete treatment can be found in [1 ], which 
also gives the most detailed review of the literature on the subject. 

It is well known that a body on a rod (or string) can perform steady rotations (permanent rotations 
or regular precessions) [1]. The equations of regular precession have the form:}: 

coa(/sin ct + a sin 0) cos ct - g sin ~ = 0 

co2[ma(l sin ct + a sin 0) + (A - C) sin 0] cos 0 - (mga + CoxO) sin 0 = 0 
(1) 

where m is the mass of the body, A and C are the central equatorial and axial moments of inertia of 
the body, a is the distance OzG, l is the length of the rod O102, g2 is the angular velocity of natural 
rotation of the body, and the product tog2 is positive for direct precession and negative for inverse 
precession. The configuration of the system is defined by the angles c~ and 0 between the descending 
vertical and the vectors O102 and O2G respectively (as usual we choose the anticlockwise direction as 
the direction for reading the angles). The angle 0, which defines the position of the body, takes values 
on the rod ct e [0, hi, while for suspension on a string tx ~ [0, ~/2]. The reduction in the range of values 
of ct in the latter case is due to the fact that no stress Balancing a compression of a string can develop; 
such a compression would be necessary for a steady rotation with ¢~ > rr/2. Regarding this see, for 
example, [2]. 

Note that permanent rotations of an axisymmetrical body are a special case of regular precessions 
and are described by system (1) when g2 = 0. 

In the problem of the steady motions of a rigid body suspended on a string, the evolution of the motion 
as a function of the angular velocity of rotation of the system is the clearest and easiest to interpret. 
Incidentally, this approach is also the most natural for an experimental investigation of the motion of 
a body driven by a string [3]. Here the problem inevitably arises of the types of conical motion which 
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Fig. I 

exist for large values of co. We will call such conical motions limiting motions. An analysis of limiting 
motions gives a fairly complete representation of the dynamic properties of the system and sometimes 
leads to the discovery of new interesting effects. Thus, the fact of the existence of limiting permanent 
rotations, for which one of the principal central axes of inertia of the body tends to coincide with the 
vertical, is the basis of  the method of dynamic balancing of  rapidly rotating bodies [4]. 

An investigation of limiting motions is extremely useful when it is not possible to make a complete 
investigation of the steady motions of a body on a string suspension. Such a situation arises, for example, 
in the problem of the steady rotations of a body fastened to a string at a point displaced from the principal 
central axis of inertia [5]. 

We will investigate all possible steady rotations of the mechanical system in question in the category 
of permanent rotations and regular precessions as to ~ ~ ,  focusing our attention mainly on the domains 
in which they exist and the way they change when the system parameters change. 

After changing to dimensionless parameters 

a A - C  C ~  I [ - ~  
× = - ( > o ) ,  o =  (2) 

l real ma~/Ig 

Eqs (1) take the form 

(sin o~ + × sin O) cos et - e2 sin et = 0 

[sin ot + (× + ~) sin O] cos 0 - e(Iz + v) sin 0 = 0 
(3) 

where, when considering rapid rotations, e is a small parameter. We will seek a solution of system (3), 
i.e. the angles ct and 0, characterizing steady motion, in the form of series in powers of e 

0c = 0~ 0 + Eaj + E2~2 + . . . .  0 - - - - 0 0 + $ 0 1 + 1 ~ 2 0 2 +  . . . .  (4) 

Substituting series (4) into Eqs (3) and retaining only terms of the zeroth order in e, we obtain the system 
of equations 

(sin Oto + x sin 0o) cos tXo = 0, [sin oq3 + (x + t~) sin00] cos 0o = 0 (5) 

which defines the limiting steady rotations of the body on the rod (string). 
The following non-trivial solutions (sin cto ~ 0, sin 00 ¢ 0) of system (5) exist 

I) t~o=rt /2 ,  0 o = n / 2 ;  2) ~o=rC/2,  0 o = - ~ / 2 ;  

3) Cto=n/2 ,  s i n 0 o = - I / ( × + a ) ;  4) sintx0=x, 0 0 = - r e / 2  (6) 
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Solutions 1 and 2 exist for any system parameters and correspond to horizontal positions of the 
rod and the axis of symmetry of the body, where in case 1 the system is "unfolded" and in case 2 it is 
"folded". 

Solutions (3) are only possible when Ix + o I > 1. In this case the rod is horizontal and the axis of 
symmetry of the body is inclined. We draw attention to the fact that Solution 3 when × + ~ < -1 differs 
qualitatively from Solution 3 when × + ~ > 1. In the first case 

0~ n) = 0. = arcsin(l/(×+ o I), 0~o 2~ = n -  0. 

and the rod with the body are deflected from the vertical in the same direction. In the second case 

= - o . ,  0 o2' = - , t  + o. 

and the rod with the body are deflected in opposite directions. In [1] these motions were called 
"pendulum-like" and "regular bumpy" respectively. 

Finally, Solutions 4, which exist when × < 1, correspond to an inclined rod (ct(01) = arcsin ×, 
cx~ ) = n - arcsin ×) and a horizontal axis of symmetry of the body. Note that since the condition I sin 
~0 --- a holds for Solutions 4, the centre of mass of the body is situated on the fixed vertical. 

In order to investigate how the steady state evolves when it tends asymptotically to the corresponding 
limiting motion, we need to determine the signs of the first non-zero corrections to the limit values cz0 
and 00. Substituting series (4) into Eqs (3), equating coefficients of terms of the first and second powers 
in e and taking into account the obvious equality 

cos cx o cos 00 = 0 (7) 

which holds for all solutions (6), we obtain the following systems of equations 

oq(cos 20.0 - x sin {Xo sin 00) = 0 

0I[(x + ~) cos 200 - sin ot o sin 00] = v sin 0o (8) 

cx 2 (cos 2ct o - × sin cx 0 sin 00) = sin ct o + oc 2 sin 2or 0 + 

+ ×(oqO, sinOto cosOo +cxt2 2 +or2 c°sa°  sin 0°)  

02 [(× + a)  cos 20 o - sin cz o sin 0 o ] = (sin 0 o + vO n cos 0 o) + (x + ~)0~ sin 200 + 

ot 2 + 0~ 
+cq0x cosCXo sin 0o + ~ sin ct0 cos00 

2 

(9) 

The coefficients of the first-order corrections cq and 01 are found from system (8), where it can be 
seen from the first equation of (8) that for all limiting solutions (6) cq = 0, with the exception of two 
degenerate cases. In the first case × = 1 and the correction cq becomes indeterminate for Solution 2. 
Here the motion is in fact similar to the motion of a rigid body with a fixed point (the centre of mass), 
since when Cto = r~/2, 00 = - n / 2 ,  a = t the centre of mass G coincides with the point at which the string 
is attached to the fixed base Oz. In the second case cq becomes an indeterminate quantity for Solution 
3 if ~ = 0. Here the body degenerates into a sphere (A = C). These special cases will not be considered 
further. 

From the second equation of (8) we find 

V V 
I) 01 = 2) 01 = - -  

× + O + 1 '  × + O - I  

v V 
3) 0 n = l _ ( × + ~ ) 2 '  4) 0 v=-o  

( lo)  

Since the first-order corrections for the angle % are equal to zero, from the first equation of (9) we 
obtain the following coefficients of the second-order corrections cz 2 
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I 1 
l) ~2 = x + l  2) ~2 × - I  

× ( 1 V2 ) 2•- 3) a 2 = - ~ ,  4) CX 2 -----v-cosa 0 (y (11) 

It follows from relations (10) that the sign of 01 changes on the straight line × + c~ = -1 for Solution 
1 and on the straight line × + a = 1 for Solution 2. For Solution 4 the coefficient 01 changes sign when 
c~ = 0, i.e. when the body degenerates into a sphere. Moreover, the sign of 01 for all solutions (6) depends 
on the sign of v, i.e. on whether direct or inverse precession is considered. 

It can be seen from relation (11) that ct 2 < 2 for Solution 1, az changes sign on the straight line 
× = I for Solution 2, and the sign of the correction changes on the straight line c~ = 0 for Solutions 3. 

For Solutions 4 the sign of the correction depends on the type of solution. For the first type of solution 
% = ~(01) we have 

and consequently ct2 > 0 when 

V 2 < V .  2 = 2G 2 

and o~ 2 < 0 when V 2 > V 2. Hence we can distinguish slow and fast natural rotations depending on whether 
the first or second condition is satisfied. Hence, when % = a(01) we have a2 > 0 for slow natural rotations 
and ct < 0 for fast ones. For the solution % = ct(02) the correction az is always positive. 

The results obtained are shown in Figs 2-5, where we show the domains in which different types of 
limiting solutions exist in the plane of the parameters × and o for the case of direct precession 
(v > 0), taking into account the nature of their asymptotic behaviour when co --4 0% i.e. taking into account 
the signs of the first non-zero corrections (/.2 and 01, in this case the equilibrium configurations of the 
system are represented schematically by the two sections O102 and 02G. Note that in the case of inverse 
precession (v < 0) the direction in which the axis of the body tends towards its limiting position reverses. 

No corresponding solutions exist in the hatched regions in Figs 4 and 5. Solution 3 (Fig. 4) changes 
into Solution 2 on the boundaries × + o = 1, and into Solution 1 on the boundary × + o = -1. Solution 
4 (Fig. 5) changes into Solution 2 on the boundary × = 1. 

:J 
- I  

• ° 7 - ° 7  

I ° 
Fig. 2 
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Fig. 3 

t~ 

Fig. 4 

As already mentioned, a feature of Solutions 4 is the fact that a different kind of asymptotic behaviour 
is possible for the case of slow and fast natural rotations. In Fig. 5, for those types of solutions for which 
this difference occurs, the direction in which the rod tends to its limiting position is shown by the 
continuous arrow when v 2 < v~ and by the dashed arrow when v 2 > v2,. 

We recall that, since there is no compression stress in the string, when the body is suspended on a 
string only those steady motions are possible for which the point where the string is attached to the 
body is situated below the point where the string is attached to the fixed base. This limitation does not 
apply when the body is suspended on a rod, Hence, all the steady motions of the system can be divided 
into two classes. Some of these are possible for both a rod and a string while the others are only possible 
for a rod. The same, naturally, applies to the limiting states. In Figs 2-5 the conventional representation 
of the suspension indicates that the corresponding type of steady motion is possible in both cases. The 
inverted suspension indicates that this case only occurs for a rod. 
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Fig. 5 

As analysis of Figs 2-5 shows that the number of limiting regular precessions possible in a specific 
system depends only on the two dimensionless parameters × and c, and in the case of a rod the number 
is 2, 4 or 6. All six limiting solutions exist simultaneously if [× + c~[ > 1, × < 1; when [× + ~[ < 1, 
× > 1 there are only two such solutions; in the remaining part of the half-plane (× > 0, c~) there are 
four limiting solutions. In the case of a string suspension the number of limiting regular precessions 
is reduced. In the regions [× + a[ > 1, × < 1 five solutions exist simultaneously, in the region 
× + g > -1, × > 1, a < 0 only one solution is possible, while in the remaining part of the half-plane 
there are three solutions. 

We will now consider permanent rotations as a special case of regular precessions when v = 0. Limiting 
solutions (6) obviously occur in this case also, but the expressions for the first non-zero corrections lack 
precision. The correction ~2 in expression (11) is only changed for Solution 4, i.e. 

x 
4) Ot 2 = I - x 2 (12) 

On the other hand, all the first-order corrections for the angle 0, as can be seen from (10), vanish 
when v = 0. Hence we must determine the second-order corrections 02. From the second equation of 
(9), using (7) and the fact that ~1 = 01 = 0, we obtain 

I l l I 
l) 0 2 = 2) 02 = -  3) 02 = 4) 02 = - -  (13) 

× + o +  I ' × + t ~ - I  ' 1 - ( × + o )  2 ' o 

The domains in which limiting permanent rotations can exist, their types and the nature of their 
evolution for Solutions 1, 3 and 4 are identical with the corresponding cases of direct regular precession 
and hence can be illustrated by Figs 2, 4 and 5. In this case, of course, the case of slow natural rotation 
in Fig. 5 corresponds to Solution 4. 

Solution 2 possesses an additional feature, which consists of the fact that, when the angular velocity 
increases, the axis of dynamic symmetry of the body tends to coincide with the rod and the system is 
"folded". In this connection the question of whether the axis of symmetry of the body will lie above or 
below the rod as one approaches the limiting solution asymptotically is of some interest. Since, in this 
case, the first non-zero corrections to the angles c~ and 0 are quantities of the same order, the answer 
depends not only on the signs of the corrections ct 2 and 02, but also on the ratio of their magnitudes 
when these corrections are of the same sign. It follows from (11) and (13) that for Solution 2 the 
coefficients c~2 and 02 are simultaneously negative in the domain 

× < 1 ,  × + c < l  (14) 
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and simultaneously positive in the domain 

~ > 1 ,  × + o > 1 (15) 

where ct 2 if cr = 0. 
Hence, the mutual position of the rod and the axis of dynamic symmetry of the body changes when 

the body degenerates into a sphere (Fig. 6). In domain (14) 0 > t~2 > 02, if the body is dynamically 
prolate (o > 0, i.e. A > X), and the body axis lies above the rod; if the body is dynamically oblate 
(a < 0), then 0 > 02 > et2 and the body axis is below the rod. In domain (15), if o > 0, then 
% > 02 > 0 and the body axis is above the rod, while if ,~ < 0, then 02 > ct2 > 0 and the rod is above 
the body axis. 

It is interesting to note that when the acceleration due to gravity g decreases, the parameter e also 
becomes small. This indicates that all the results obtained when analysing the limiting permanent 
rotations (but not the regular precessions!) remain valid not only when co ~ 0% but also for a finite 
angular velocity if in this case g ~ 0. 
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